Advisories for Pypi/Pyspark package

2023

Apache Spark UI vulnerable to Command Injection

The Apache Spark UI offers the possibility to enable ACLs via the configuration option spark.acls.enable. With an authentication filter, this checks whether a user has access permissions to view or modify the application. If ACLs are enabled, a code path in HttpSecurityFilter can allow someone to perform impersonation by providing an arbitrary user name. A malicious user might then be able to reach a permission check function that will ultimately …

Apache Spark vulnerable to Improper Privilege Management

In Apache Spark versions prior to versions 3.4.0 and 3.3.3, applications using spark-submit can specify a proxy-user to run as, limiting privileges. The application can execute code with the privileges of the submitting user, however, by providing malicious configuration-related classes on the classpath. This affects architectures relying on proxy-user, for example those using Apache Livy to manage submitted applications. Update to Apache Spark 3.4.0, 3.3.3, or later, and ensure that …

2022

Apache Spark vulnerable to Log Injection

A stored cross-site scripting (XSS) vulnerability in Apache Spark 3.2.1 and earlier, and 3.3.0, allows remote attackers to execute arbitrary JavaScript in the web browser of a user, by including a malicious payload into the logs which would be returned in logs rendered in the UI.

Apache Spark UI can allow impersonation if ACLs enabled

The Apache Spark UI offers the possibility to enable ACLs via the configuration option spark.acls.enable. With an authentication filter, this checks whether a user has access permissions to view or modify the application. If ACLs are enabled, a code path in HttpSecurityFilter can allow someone to perform impersonation by providing an arbitrary user name. A malicious user might then be able to reach a permission check function that will ultimately …

Authentication Bypass by Capture-replay in Apache Spark

Apache Spark supports end-to-end encryption of RPC connections via "spark.authenticate" and "spark.network.crypto.enabled". In versions 3.1.2 and earlier, it uses a bespoke mutual authentication protocol that allows for full encryption key recovery. After an initial interactive attack, this would allow someone to decrypt plaintext traffic offline. Note that this does not affect security mechanisms controlled by "spark.authenticate.enableSaslEncryption", "spark.io.encryption.enabled", "spark.ssl", "spark.ui.strictTransportSecurity". Update to Apache Spark 3.1.3 or later

Improper Authentication in Apache Spark

In Apache Spark 2.4.5 and earlier, a standalone resource manager's master may be configured to require authentication (spark.authenticate) via a shared secret. When enabled, however, a specially-crafted RPC to the master can succeed in starting an application's resources on the Spark cluster, even without the shared key. This can be leveraged to execute shell commands on the host machine. This does not affect Spark clusters using other resource managers (YARN, …

2021

Uncontrolled Resource Consumption

When Jetty handles a request containing multiple Accept headers with a large number of quality (i.e., q) parameters, the server may enter a denial of service (DoS) state due to high CPU usage processing those quality values, resulting in minutes of CPU time exhausted processing those quality values.

2020
2019

Sensitive data written to disk unencrypted in Spark

Prior to Spark 2.3.3, in certain situations Spark would write user data to local disk unencrypted, even if spark.io.encryption.enabled=true. This includes cached blocks that are fetched to disk (controlled by spark.maxRemoteBlockSizeFetchToMem); in SparkR, using parallelize; in Pyspark, using broadcast and parallelize; and use of python udfs.

Pyspark User Impersonation Vulnerability

When using PySpark , it's possible for a different local user to connect to the Spark application and impersonate the user running the Spark application. This affects versions 1.x, 2.0.x, 2.1.x, 2.2.0 to 2.2.2, and 2.3.0 to 2.3.1.