An unsafe deserialization vulnerability allows any authenticated user to execute arbitrary code on the server if they are able to get the model to pass the code as an argument to a tool call.
A Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user.
A recent review identified several regular expressions in the vllm codebase that are susceptible to Regular Expression Denial of Service (ReDoS) attacks. These patterns, if fed with crafted or malicious input, may cause severe performance degradation due to catastrophic backtracking.
The vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the "pattern" and "type" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted.
The vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the "pattern" and "type" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted.
In the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image’s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This …
A Regular Expression Denial of Service (ReDoS) vulnerability exists in the file vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py of the vLLM project. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable.
A Regular Expression Denial of Service (ReDoS) vulnerability exists in the file vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py of the vLLM project. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable.
Hitting the /v1/completions API with a invalid json_schema as a Guided Param will kill the vllm server
Hitting the /v1/completions API with a invalid json_schema as a Guided Param will kill the vllm server
A denial of service bug caused the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg, but for regex instead of a JSON schema. Issue with more details: https://github.com/vllm-project/vllm/issues/17313
A denial of service bug caused the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg, but for regex instead of a JSON schema. Issue with more details: https://github.com/vllm-project/vllm/issues/17313
This issue arises from the prefix caching mechanism, which may expose the system to a timing side-channel attack.
vLLM supports the use of the PyNcclPipe class to establish a peer-to-peer communication domain for data transmission between distributed nodes. The GPU-side KV-Cache transmission is implemented through the PyNcclCommunicator class, while CPU-side control message passing is handled via the send_obj and recv_obj methods on the CPU side. A remote code execution vulnerability exists in the PyNcclPipe service. Attackers can exploit this by sending malicious serialized data to gain server control …
In a multi-node vLLM deployment using the V0 engine, vLLM uses ZeroMQ for some multi-node communication purposes. The secondary vLLM hosts open a SUB ZeroMQ socket and connect to an XPUB socket on the primary vLLM host.
vLLM integration with mooncake is vaulnerable to remote code execution due to using pickle based serialization over unsecured ZeroMQ sockets. The vulnerable sockets were set to listen on all network interfaces, increasing the likelihood that an attacker is able to reach the vulnerable ZeroMQ sockets to carry out an attack. This is a similar to GHSA - x3m8 - f7g5 - qhm7, the problem is in
A critical performance vulnerability has been identified in the input preprocessing logic of the multimodal tokenizer. The code dynamically replaces placeholder tokens (e.g., <|audio_|>, <|image_|>) with repeated tokens based on precomputed lengths. Due to inefficient list concatenation operations, the algorithm exhibits quadratic time complexity (O(n²)), allowing malicious actors to trigger resource exhaustion via specially crafted inputs.
A critical performance vulnerability has been identified in the input preprocessing logic of the multimodal tokenizer. The code dynamically replaces placeholder tokens (e.g., <|audio_|>, <|image_|>) with repeated tokens based on precomputed lengths. Due to inefficient list concatenation operations, the algorithm exhibits quadratic time complexity (O(n²)), allowing malicious actors to trigger resource exhaustion via specially crafted inputs.
In a multi-node vLLM deployment, vLLM uses ZeroMQ for some multi-node communication purposes. The primary vLLM host opens an XPUB ZeroMQ socket and binds it to ALL interfaces. While the socket is always opened for a multi-node deployment, it is only used when doing tensor parallelism across multiple hosts. Any client with network access to this host can connect to this XPUB socket unless its port is blocked by a …
https://github.com/vllm-project/vllm/security/advisories/GHSA-rh4j-5rhw-hr54 reported a vulnerability where loading a malicious model could result in code execution on the vllm host. The fix applied to specify weights_only=True to calls to torch.load() did not solve the problem prior to PyTorch 2.6.0. PyTorch has issued a new CVE about this problem: https://github.com/advisories/GHSA-53q9-r3pm-6pq6 This means that versions of vLLM using PyTorch before 2.6.0 are vulnerable to this problem.
This report is to highlight a vulnerability in XGrammar, a library used by the structured output feature in vLLM. The XGrammar advisory is here: https://github.com/mlc-ai/xgrammar/security/advisories/GHSA-389x-67px-mjg3 The xgrammar library is the default backend used by vLLM to support structured output (a.k.a. guided decoding). Xgrammar provides a required, built-in cache for its compiled grammars stored in RAM. xgrammar is available by default through the OpenAI compatible API server with both the V0 …
vllm-project vllm version 0.6.0 contains a vulnerability in the distributed training API. The function vllm.distributed.GroupCoordinator.recv_object() deserializes received object bytes using pickle.loads() without sanitization, leading to a remote code execution vulnerability.
vllm-project vllm version v0.6.2 contains a vulnerability in the MessageQueue.dequeue() API function. The function uses pickle.loads to parse received sockets directly, leading to a remote code execution vulnerability. An attacker can exploit this by sending a malicious payload to the MessageQueue, causing the victim's machine to execute arbitrary code.
vllm-project vllm version 0.6.0 contains a vulnerability in the AsyncEngineRPCServer() RPC server entrypoints. The core functionality run_server_loop() calls the function _make_handler_coro(), which directly uses cloudpickle.loads() on received messages without any sanitization. This can result in remote code execution by deserializing malicious pickle data.
The outlines library is one of the backends used by vLLM to support structured output (a.k.a. guided decoding). Outlines provides an optional cache for its compiled grammars on the local filesystem. This cache has been on by default in vLLM. Outlines is also available by default through the OpenAI compatible API server.
When vLLM is configured to use Mooncake, unsafe deserialization exposed directly over ZMQ/TCP will allow attackers to execute remote code on distributed hosts.
Maliciously constructed statements can lead to hash collisions, resulting in cache reuse, which can interfere with subsequent responses and cause unintended behavior.
Maliciously constructed prompts can lead to hash collisions, resulting in prefix cache reuse, which can interfere with subsequent responses and cause unintended behavior.
The vllm/model_executor/weight_utils.py implements hf_model_weights_iterator to load the model checkpoint, which is downloaded from huggingface. It use torch.load function and weights_only parameter is default value False. There is a security warning on https://pytorch.org/docs/stable/generated/torch.load.html, when torch.load load a malicious pickle data it will execute arbitrary code during unpickling.