Advisories for Pypi/Wasmtime package

2023

Off-by-one Error

Wasmtime is a standalone runtime for WebAssembly. Wasmtime versions from 10.0.0 to versions 10.02, 11.0.2, and 12.0.1 contain a miscompilation of the WebAssembly i64x2.shr_s instruction on x86_64 platforms when the shift amount is a constant value that is larger than 32. Only x86_64 is affected so all other targets are not affected by this. The miscompilation results in the instruction producing an incorrect result, namely the low 32-bits of the …

Reliance on Undefined, Unspecified, or Implementation-Defined Behavior

Wasmtime is a standalone runtime for WebAssembly. Prior to versions 6.0.2, 7.0.1, and 8.0.1, Wasmtime's implementation of managing per-instance state, such as tables and memories, contains LLVM-level undefined behavior. This undefined behavior was found to cause runtime-level issues when compiled with LLVM 16 which causes some writes, which are critical for correctness, to be optimized away. Vulnerable versions of Wasmtime compiled with Rust 1.70, which is currently in beta, or …

2022

Out-of-bounds Write

Wasmtime is a standalone runtime for WebAssembly. Prior to version 2.0.2, there is a bug in Wasmtime's C API implementation where the definition of the wasmtime_trap_code does not match its declared signature in the wasmtime/trap.h header file. This discrepancy causes the function implementation to perform a 4-byte write into a 1-byte buffer provided by the caller. This can lead to three zero bytes being written beyond the 1-byte location provided …

Improper Removal of Sensitive Information Before Storage or Transfer

Wasmtime is a standalone runtime for WebAssembly. Prior to version 2.0.2, there is a bug in Wasmtime's implementation of its pooling instance allocator where when a linear memory is reused for another instance the initial heap snapshot of the prior instance can be visible, erroneously to the next instance. This bug has been patched and users should upgrade to Wasmtime 2.0.2. Other mitigations include disabling the pooling allocator and disabling …

Incorrect Calculation

Wasmtime is a standalone runtime for WebAssembly. There is a bug in Wasmtime's code generator, Cranelift, for AArch64 targets where constant divisors can result in incorrect division results at runtime. This affects Wasmtime prior to version 0.38.2 and Cranelift prior to 0.85.2. This issue only affects the AArch64 platform. Other platforms are not affected. The translation rules for constants does not take into account whether sign or zero-extension should happen …

Use After Free

Wasmtime is a standalone runtime for WebAssembly. There is a bug in the Wasmtime's code generator, Cranelift, where functions using reference types may be incorrectly missing metadata required for runtime garbage collection. This means that if a GC happens at runtime then the GC pass will mistakenly think these functions do not have live references to GC'd values, reclaiming them and deallocating them. The function will then subsequently continue to …

Incorrect Calculation

Wasmtime is a standalone runtime for WebAssembly. In affected versions wasmtime's implementation of the SIMD proposal for WebAssembly on x86_64 contained two distinct bugs in the instruction lowerings implemented in Cranelift. The aarch64 implementation of the simd proposal is not affected. The bugs were presented in the i8x16.swizzle and select WebAssembly instructions. The select instruction is only affected when the inputs are of v128 type. The correspondingly affected Cranelift instructions …

Use After Free

Wasmtime is a standalone JIT-style runtime for WebAssembly, using Cranelift. There is a use after free vulnerability in Wasmtime when both running Wasm that uses externrefs and enabling epoch interruption in Wasmtime. If you are not explicitly enabling epoch interruption (it is disabled by default) then you are not affected. If you are explicitly disabling the Wasm reference types proposal (it is enabled by default) then you are also not …

Access of Uninitialized Pointer

Wasmtime is an open source runtime for WebAssembly & WASI. Prior to versions 0.34.1 and 0.33.1, there exists a bug in the pooling instance allocator in Wasmtime's runtime where a failure to instantiate an instance for a module that defines an externref global will result in an invalid drop of a VMExternRef via an uninitialized pointer. A number of conditions listed in the GitHub Security Advisory must be true in …

2021

Wrong type for `Linker`-define functions when used across two `Engine`s

As a Rust library the wasmtime crate clearly marks which functions are safe and which are unsafe, guaranteeing that if consumers never use unsafe then it should not be possible to have memory unsafety issues in their embeddings of Wasmtime. An issue was discovered in the safe API of Linker::func_* APIs. These APIs were previously not sound when one Engine was used to create the Linker and then a different …

Use after free passing `externref`s to Wasm in Wasmtime

There was a use-after-free bug when passing externrefs from the host to guest Wasm content. To trigger the bug, you have to explicitly pass multiple externrefs from the host to a Wasm instance at the same time, either by passing multiple externrefs as arguments from host code to a Wasm function, or returning multiple externrefs to Wasm from a multi-value return function defined in the host. If you do not …

Out-of-bounds read/write and invalid free with `externref`s and GC safepoints in Wasmtime

There was an invalid free and out-of-bounds read and write bug when running Wasm that uses externrefs in Wasmtime. To trigger this bug, Wasmtime needs to be running Wasm that uses externrefs, the host creates non-null externrefs, Wasmtime performs a garbage collection (GC), and there has to be a Wasm frame on the stack that is at a GC safepoint where there are no live references at this safepoint, and …

Memory access due to code generation flaw in Cranelift module

There is a bug in 0.73.0 of the Cranelift x64 backend that can create a scenario that could result in a potential sandbox escape in a WebAssembly module. Users of versions 0.73.0 of Cranelift should upgrade to either 0.73.1 or 0.74 to remediate this vulnerability. Users of Cranelift prior to 0.73.0 should update to 0.73.1 or 0.74 if they were not using the old default backend.